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Simulations of steady two-dimensional stratified flow over an isolated obstacle are
presented where the obstacle is tall enough so that the topographic Froude number,
Nhm/Uo � 1. N is the buoyancy frequency, hm the height of the topography from
the channel floor and Uo the flow speed infinitely far from the obstacle. As for
moderate Nhm/Uo (∼1), a columnar response propagates far up- and downstream,
and an arrested lee wave forms at the topography. Upstream, most of the water
beneath the crest is blocked, while the moving layer above the crest has a mean
velocity Um =UoH/(H − hm). The vertical wavelength implied by this velocity scale,
λo = 2πUm/N , predicts dominant vertical scales in the flow. Upstream of the crest
there is an accelerated region of fluid approximately λo thick, above which there is
a weakly oscillatory flow. Downstream the accelerated region is thicker and has less
intense velocities. Similarly, the upstream lift of isopycnals is greatest in the first
wavelength near the crest, and weaker above and below. Form drag on the obstacle
is dominated by the blocked response, and not on the details of the lee wave, unlike
flows with moderate Nhm/Uo.

Directly downstream, the lee wave that forms has a vertical wavelength given by
λo, except for the deepest lobe which tends to be thicker. This wavelength is small
relative to the fluid depth and topographic height, and has a horizontal phase speed
cpx = −Um, corresponding to an arrested lee wave. When considering the spin-up to
steady state, the speed of vertical propagation scales with the vertical component of
group velocity cgz = αUm, where α is the aspect ratio of the topography. This implies
a time scale t̂ = tNα/2π for the growth of the lee waves, and that steady state is
attained more rapidly with steep topography than shallow, in contrast with linear
theory, which does not depend on the aspect ratio.

1. Introduction
Nonlinear lee waves are observed in the atmosphere as downslope flows over

mountain ranges (i.e. Lilly 1978) and in the ocean as flow over sills (i.e. Farmer &
Smith 1980). These flows have been studied in the field, laboratories, and numerically
(see Baines 1995 for a comprehensive review). These studies, however, have usually
been for flows where the lee wave is of similar scale to the obstacle (or even much
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Figure 1. (a) Steady state of moderate Nhm/Uo flow (i.e. low mode, but still blocked
upstream). (b) High Nhm/Uo flow (i.e. high mode) characteristic of tidal flow over deep
ocean ridges. (c) Sketch of flow parameters. The mean flow in all cases is in the positive-x
direction.

larger), meaning that in a finite-depth fluid they are dominated by low vertical modes
in the flow (i.e. figure 1a).

Recently, lee waves made up of high vertical modes have been observed at
underwater ridges and continental shelves. Large-amplitude nonlinear waves were
observed breaking near the crest of the underwater ridge between Oahu and Kauii
(Levine & Boyd 2006; Klymak, Pinkel & Rainville 2008). These breaking waves led to
vertical displacements of over 100 m, and drove large viscous dissipation and mixing.
Since the vertical wavelength was only a fraction of the local water depth and obstacle
height, we loosely term them ‘high mode’. Recent numerical work demonstrates that
these high-mode waves are formed at the topographic break during off-ridge tidal
flow (Legg & Klymak 2008). When the tide reverses the waves propagate on-ridge,
much like lee waves released from tidal flows over sills in fjords (Farmer & Smith
1980; Klymak & Gregg 2003). Similar phenomena have been implicated in mixing
on the Oregon continental slope (Nash et al. 2007).

In this paper, we step back from oscillating forcing and consider the response of a
large obstacle to steady forcing. The goal is to predict the lee response, in particular
the amplitude of the lee wave. We are also interested in understanding how long
it takes for the lee wave to establish itself, since, if the flow is oscillating and the
establishment time is large compared to the forcing period, the arrested lee wave may
not be observed.

We consider channel flow with a depth H , stratification N and an initial
barotropic velocity of Uo (figure 1c). For the flows investigated here, we use
oceanic values of N ≈ 5.2 × 10−3 s−1, H ≈ 2000 m and Uo ≈ 0.1 m s−1 for a very large
NH/Uo ≈ 100. The response of a stratified flow varies with the height of the obstacle
hm, as governed by the topographic Froude number Nhm/Uo. For a very small
obstacle, Nhm/Uo � 1, linear dynamics predicts that stationary lee waves over the
obstacle will have the horizontal wavenumber kx set by the dominant topographic
wavenumber. The vertical wavenumber is set by the requirement that the waves be
arrested, so that the magnitude of the horizontal phase speed is equal to the flow
velocity: Uo = cpx = N/(k2

x + k2
z )

1/2. If the waves are hydrostatic this simplifies to kz =
N/Uo.
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H (m) hm (m) W (km) N (10−3s−1) Uo (cm s−1) NH/Uo Nhm/Um

2000 1000 10 5.2 1, 1.5, 2, 2.5, 3, 4, ..., 16, 17, 20, 25 1040–42 260–10.4
2000 1000 10 2.6 1, 2, 4, 8, 12, 16, 20 520–26 130–7
1300 300 10 5.2 0.8, 1.6, 2.6, 6.1, 12.3, 18.5, 24.6, 30.8 845–22 150–4
1650 650 10 5.2 4.9, 9.7, 14.6, 19.4 175–44 41–11
2000 500 10 5.2 4, 8, 12, 16, 20 260–52 49–10
2000 1500 10 5.2 2, 4, 8, 12, 16, 20 520–260 98–49

H (m) hm (m) W (km) N (10−3s−1) Uo (cm s−1) NH/Uo Nhm/Um

2000 1000 5, 7, 10, 20, 40 5.2 4 260 65
2000 1000 5, 10, 20, 40 5.2 6 173 43
2000 1000 5, 10, 20, 40 5.2 8 130 33
2000 1000 5, 10, 20, 40 5.2 10 104 26
2000 1000 5, 7, 10, 20, 40 5.2 12 87 22
2000 1000 5, 10, 20, 40 5.2 14 74 19
2000 1000 5, 7, 10, 20, 40 5.2 16 65 16

Table 1. Summary of external dimensional parameters for model runs discussed. The runs in
the first set test the dependence on the stratification (N ), obstacle height (hm), water depth (H )
and initial upstream velocity (Uo). The second set test the dependence on obstacle width (W )
at a variety of flow speeds.

For finite-height obstacles with Nhm/Uo < 1, nonlinear effects become important,
but the flow over the obstacle is still calculable from the initial upstream conditions
(Long 1955). As Nhm/Uo � 1 two effects become important. First, not all the water
upstream of the obstacle can surmount the crest. This creates a convergence of dense
water upstream that propagates arbitrarily far upstream as a ‘columnar disturbance’,
changing the stratification and velocity profile relevant for predicting the downstream
flow (Pierrehumbert & Wyman 1985; Baines 1988). For Nhm/Uo � 3 ‘partial blocking’
is observed (Farmer & Denton 1985), and some of the water upstream does not ever
make it over the obstacle. This blocked water creates a stagnant layer on both the up-
and downstream sides of the obstacle, with compensating accelerated flow above. For
moderate Nhm/Uo, the steady-state flow is not analytically predictable; Baines (1988)
resorts to an iterative procedure, and recent work has simulated the Navier–Stokes
equations numerically.

The second effect that occurs with increased nonlinearity is that streamlines
downstream of the obstacle become statically unstable in a stratified hydraulic jump
(Peltier & Clark 1979; Durran 1990; Afanasyev & Peltier 2001). The flow can also
develop local shear instabilities where Ri−1 = (∂u/∂z)2/N2 > 4 (Peltier & Scinocca
1990; Farmer & Armi 1999). Both the turbulence mechanisms dissipate energy and
cause mixing (Klymak & Gregg 2004; Inall et al. 2005), further invalidating Long’s
solution.

For the flows considered here the topographic Froude number is in the range
8 < Nhm/Uo < 320 (figure 1b and table 1), much beyond the regimes we have seen
previously reported. Our study therefore extends the understanding of stratified flows
over topography into a previously unexplored regime. Blocking alters the response to
such an extent that we argue the relevant velocity scale to use for characterizing the
local response is no longer the free-stream velocity U0, but the mean velocity of the
layer at the top of the obstacle Um =Uo(H/H − hm). For large Nhm/Uo, the upstream
velocity in the non-blocked layers is well approximated by this velocity.
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For the oceanic problems that motivate this study the mean flow oscillates with
the tide (Legg & Klymak 2008). Therefore the issue of how long it takes for the
flow to become ‘quasi-steady’ is important. For short, narrow obstacles (Nhm/Uo � 1,
Uo/ωoW � 1, where W is the width scale of the obstacle, and ωo the forcing frequency)
the flow can be considered quasi-steady if the forcing frequency satisfies ωo/N � 1
(Bell 1975). This is not the case for large obstacles (Nhm/Uo � 1 or Uo/ωoW � 1)
where blocking and upstream effects become important and the establishment time
of the lee wave can become a significant multiple of 1/ωo (Pierrehumbert & Wyman
1985; Klymak & Gregg 2003). Below it is demonstrated that the establishment time
can be predicted by the implied vertical group velocity, which is in turn governed by
the aspect ratio of the topography.

2. Numerical model
The model used here is the MITgcm (Marshall et al. 1997; Legg & Klymak 2008).

We use a two-dimensional topography, with a stretched horizontal coordinate system.
For most of the runs here H = 2000 m (table 1), and vertical resolution was 200 points
with �zm = 10 m; a few runs were made with H = 1300 and 1650 m. The horizontal
domain was 174 km over 240 grid cells. The inner 80 grid cells were spaced 100 m
apart, and then the grid was telescoped linearly so that for the outer cells �x = 2 km.
The obstacle in all cases is a Gaussian shape, with height from the seafloor given
by h = hmexp(−x2/W 2). The width W introduces an aspect ratio to the problem
αo = hm/W .

The model was run in hydrostatic mode for numerical efficiency. Experiments
with non-hydrostatic code did not reveal substantial differences in the features of
interest here, given that our topographic aspect ratios are typically αo =0.1. The
boundaries were forced with a constant inflow/outflow condition of Uo. The linear
stratification of No = 5.2 × 10−3 s−1 was achieved by using temperature in a linear
equation of state (No/2 was used for a few runs). The open boundaries allowed
waves to radiate out of the domain (Orlanski 1976), and linear nudging was used
in the outer 10 boundary points to suppress boundary instabilities. Flow instabilities
are smoothed out by a Richardson-number turbulence scheme (Mellor & Yamada
1982) which increases diffusivities and viscosities above the background values. The
background values of vertical diffusivity and viscosity are Kv = νv = 10−5 m2 s−1, while
the background values of horizontal diffusivity and viscosity are Kh = νh =10−3 m2 s−1.
Convective instabilities are smoothed away with a very strong diffusivity. The Mellor
& Yamada (1982) mixing dominated in the lee of the obstacle, primarily due to
convective overturning. A number of experiments with different advection schemes
and mixing parameterizations indicate that the large- and medium-scale features of
the flow, which are the focus of our study, do not change for reasonable choices. An
examination of the mixing induced by these flows is beyond the scope of this paper.
Runs were made for 60 h of simulation time, or 180 buoyancy periods.

The model does not resolve the bottom boundary layer so we run with a free-
slip bottom boundary condition. This rules out bottom boundary layer separation,
which has been implicated in affecting the development of lee wave flows in fjords
(Farmer & Armi 1999; Lamb 2004). However, laboratory flows only exhibit steady-
state boundary layer separation for low Nhm/Uo flow over steep obstacles (Baines
1995), whereas for the runs explored here Nhm/Uo is large, and the aspect ratios
relatively gentle, implying that the flow is separating because it encounters dense



High-mode stationary waves 325

3

2

1

0

–5 0

Nhm/Um = 43.3
α = 0.10

Nhm/Um = 21.7
α = 0.10

5 –5 0 5

–1

–2

–3

(a) (b)

z 
N

/(
2
π

 U
m

)

x α N/(2π Um)

0 1

U/Um

2

Figure 2. Two example steady-state flows, the flow in (a) is half the speed of (b). The vertical
axis is scaled by the expected vertical wavelength and the horizontal by the expected horizontal
wavelength. Thus the vertical wavelength of the flow in physical space in (a) is half that in
(b). Contours are of density, evenly spaced in the upstream profile. Both obstacles have the
same shape in physical space, which when non-dimensionalized means the view is only of the
top of the obstacle in (a). Note the channel surface is plotted at the top of (b).

water downstream not because of torque and flow reversal in the bottom boundary
layer (Klymak & Gregg 2003; Lamb 2004).

3. Results
3.1. Example and scaling

Two examples serve to motivate the remainder of the paper and the appropriate
scaling for the flow near the obstacle crest (figure 2). Both the simulations are run for
the same topography and stratification (H = 2000 m, hm = 1000 m, αo =hm/W =0.1,
N = 5.2 × 10−3 s−1). The first (figure 2a) has an upstream velocity U0 = 0.06 m s−1, the
second has double that U0 = 0.12 m s−1.

The steady-states in both simulations show that the water upstream of the obstacle
has been arrested below the crest. The boundary conditions are such that the
barotropic flow remains (approximately) constant everywhere in the domain, so the
transport in the layer above the crest has the same transport as the initial condition,
implying that a reasonable scaling for the velocity is

Um =
UoH

H − hm

=
UoH

Dm

, (3.1)

where we have defined the depth of the water at the obstacle crest as Dm =H −hm. We
expect solutions in the lee of the sill that are stationary with respect to the oncoming
flow. Although we do not expect our waves to be linear, we scale by the linear vertical
wavelength kz =N/U for hydrostatic waves, except now U = Um, instead of Uo, so
that ẑ = zN/2πU . The utility of this scaling can be seen by inspection in figure 2
where the alternating bands of fast- and slow-moving water in the lee of the obstacle
have approximately the correct wavelength. As demonstrated below, for most of the
flow features we are interested in, a useful scaling for the flow is NDm/Um, form drag
being the notable exception. Thus the height of the topography, hm only matters in
setting the modified upstream velocity Um. Once it has been established, the depth of
the stagnant pool does not play a dynamic role.

The horizontal scaling is given by the same vertical scale, modified by the aspect
ratio α = hm/W of the topography. Below we will show that the ‘effective height’
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Figure 3. Up- and downstream profiles 25 km from the obstacle crest for all the runs in the
first set of table 1, shown 180 buoyancy periods after the beginning of the calculation. The
vertical is scaled as z′ = zN/(2πUm), as discussed in the text. (a) Upstream velocity scaled by
Um, (b) upstream vertical displacement scaled by λo = 2πUm/N . (c) Example velocity field, and
(d ) displacement field from a run with Nhm/Um = 52, αo = 0.1 both with isopycnal contours
from an equispaced upstream profile. (e) Downstream velocity and (f ) displacement. In (a),
(b), (e) and (f ) the grey profiles are for runs where high-mode waves were not expected to
have propagated 25 km upstream by 180 buoyancy periods.

of the topography scales close to λz =U/N , so the effective width will be given by
λx = λz/α, and therefore kz/kx = α.

Finally, in figure 2 and the plots that follow, U is scaled by Um, and the temperature
by UmN/βg where β is the thermal expansion co-efficient, and g the gravitational
constant.

3.2. Upstream and downstream response

The response far from the obstacle is the result of columnar disturbances that
propagate up and downstream after the flow is started from rest. For the high
NH/U flows considered here the upstream response is relatively uniform over a
broad range of NDm/Um when scaled by λo =2πUm/N (figure 3a,b). The velocity
response consists of a blocked flow deeper than the obstacle crest. At the obstacle
crest there is a strong acceleration, between 1.5Um and 2Um, this accelerated region
extending approximately one wavelength above the obstacle. Above that the flow is
slightly oscillatory, with the oscillations becoming more pronounced the longer the
flow is allowed to develop. However, in general, the mean of this flow is centred
between 0.75Um and 1Um.

We can empirically parameterize the variations of these velocities as they change
with the forcing, NDm/Um (figure 4). For the mean velocity (ua) above the first vertical
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wavelength (z − Dm > λo) a simple fit:

ua

Um

= 1 −
(

NDm

Um

)−1/2

(3.2)

is chosen to asymptote to ua = Um for large NDm/Um where the vertical wavelength
becomes very small, though we did not test this limit thoroughly as we do not expect
it to be important in realizable flows. The mean of the velocity in the first wavelength
ub follows from this as

ubλo + ua(Dm − λo) = UmDm, (3.3)

which gives

ub

Um

=
NDm

Um

1

2π

(
1 − ua

Um

)
+

ua

Um

, (3.4)

parameterizing the upstream response in the first vertical wavelength (figure 4).
The changes in the upstream velocity are mediated by changes in the upstream

density field, and thus internal pressures. These are concentrated within two
wavelengths of the obstacle crest (figure 3b,d ), and quantified using the vertical
displacement of isopycnals from their initial depth zo(T ):

ζ (z) = z − zo(T (z)). (3.5)

The largest upward displacements occur just below the obstacle crest and have a value
near 0.25λo. The highest this disturbance reaches above the crest is approximately λo.
Above this height there are vertical displacements, but they are small. Downstream,
there is a region almost −λo below the obstacle crest where the water has been
drawn down as much as 0.25λo, but again there are only small displacements
above λo.

The depth from which water is withdrawn from the upstream reservoir can be
thought of as an effective height of the topography hef . This scales with the upstream
velocity and stratification hef = U/N (Stommel & Farmer 1953). If we use Um as the
velocity scale, hef is under predicted (figure 4b, small symbols, though note these are
offset by a factor of 2 for ease of display). A second-order correction using the flow
speed near the obstacle crest ub gives a better scaling (figure 4b, large symbols).
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period.

Hydraulic control of a flow means that the energy up- and downstream is
permanently changed by introduction of the obstacle, usually because the initial
flow configuration does not have enough kinetic energy to surmount the obstacle.
Simple flows have readily calculable critical conditions (i.e. Henderson 1966; Armi
1986), and usually involve an arrested wave speed. Here, the flow is more complex, and
a stratified critical criterion is not as readily identified. Nonetheless we can observe
the irreversible change of the upstream energy. For simplicity, we just consider the

kinetic energy here, Ke =
∫ H

0
1/2 u2 dz compared to the undisturbed kinetic energy

Keo = 1/2 U 2H (figure 5). The response is somewhat smeared because of the 2 h
spin-up of the simulations, but the earliest response follows the mode 1 wave speed
and subsequent increases in the response follow the lower mode speeds. These changes
are ‘columnar’ in that they do not oscillate in time (though the astute reader will
note some oscillations, primarily due to undamped barotropic waves), a signature of
a hydraulic response.

3.3. Form drag

The up- and downstream responses are characterized by a lift of the isopycnals
upstream and a drop downstream, leading to a pressure drop across the obstacle.
This pressure drop is the manifestation of a form drag Fd on the mean flow:

Fd =

∫ +∞

−∞
Ph

dh

dx
dx, (3.6)

where Ph is the pressure at the seafloor. The displacements are consistent enough
across the runs that we can derive a simple scaling for the form drag using a two
and a half-layer model that has the vertical displacements noted above. We assume
that at some height above the topography hu the water is undisturbed (see sketch,
figure 6c), and that an interface initially at −�h/2 has been raised �h/2 upstream to
the obstacle crest and dropped −�h/2 downstream. For constant stratification there
is a density difference in the two layers of �ρ = ρN2(hm + hu)/2g and the predicted
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form-drag Fd0
is

FdO
=

∫ −�h

−hm

g �ρ �h dh +

∫ 0

−�h

g �ρ h dh, (3.7)

= g �ρ �h

(
hm − 3

2
�h

)
, (3.8)

=
ρN2

2
�h h2

m

(
1 +

hu

hm

− 3

2

�h

hm

− 3

2

hu

hm

�h

hm

)
. (3.9)

To leading order the form drag depends on the stratification, obstacle height and
the up- and downstream displacement �h ≈ λo/3 (figure 6a). There is a first-order
correction due to �h/hm and hu/hm. For simplicity, we assume that hu ≈ λo = 2πUm/N

to get

FdO
= ρNUmh2

m

π

2

(
1 + π

Um

Nhm

− 2π2

(
Um

Nhm

)2
)

, (3.10)

where the last two terms can be ignored for Nhm/Um � π/2, or λo/hm � 4 which is
true for most of the runs studied here.

This scaling works well for predicting the form drag on the obstacle (figure 6b,
calculable precisely from the model output), though it overpredicts the drag by 20 %
or so for most obstacles (figure 6d ). The largest overprediction is for the ridges with
hm/H = 0.75 (stars), and thus the ridges for which the upstream response was most
influenced by the presence of the upper boundary. This is to be expected since our
scaling did not account for the effect of the upper boundary. A similar scaling does
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(table 1, row 1). Darker curves are for faster flows (smaller Nhm/Um).

not exist for low-NH/U flows because the up- and downstream responses are not as
predictable.

3.4. Steady lee response

The lee response is dominated by an arrested wave. The vertical wavelength λz is
determined from the velocity signal in the lee of the obstacle at a dimensionless
distance x/W = 0.16 from the crest by finding the second peak of the lag
autocorrelation and then compared to 2πU/N . The wavelength of the lee-wave
disturbance scales with the upstream velocity, U =Um, much better than with the
original velocity (figure 7).

These lee ‘waves’ are very nonlinear, so this scaling only holds in a rough sense,
however, it does a relatively good job of collapsing the response as observed in
velocity profiles slightly downstream of the crest (figure 8). The first half-wavelength
tends to be larger than the ones further aloft, with the first velocity maximum near
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1.5-λo. This is the most nonlinear part of the lee response, and has the strongest
velocities.

The presence of the free surface also affects the lee response at higher order. For
a short obstacle, where the free surface is far from the obstacle crest, the scaling
holds up the best (figure 8a). The wavelengths further aloft, i.e. greater than 3λo, are
somewhat shorter than the scaling predicts. When the obstacle is half the water depth
(figure 8b) the universality of the velocity profiles is not as robust. The faster flows
(darker curves) have fewer wavelengths that fit in the water depth, and the influence
of the surface changes the regularity of the response. This implies that the scalings
here work best when at least one vertical wavelength fits in the gap, NDm/Um > 2π.

3.5. Establishment time

Geophysical lee waves are not always formed under steady forcing, therefore the time
it takes for the lee wave to become established is important to determining if it will
be seen in natural flows. We scale the growth of the lee response by considering the
vertical propagation speed of the waves. The vertical group speed of a linear wave is
given by cgz = ∂ωi/∂kz, where ωi = Nkx/kz is the intrinsic frequency of the hydrostatic
wave. This gives cgz = −Nkx/k2

z . For linear waves, as noted above, kx and kz are
independent, and set by the width of the obstacle and the N/U respectively. This
gives cgz =2π(U 2/WN), and if we define a time scale to create a lee wave as the time
it takes for a signal to propagate one vertical wavelength, we get t̂ = (U/W )t .

This linear scaling, however, does not apply to the growth of the lee waves in the
highly blocked case discussed here. A few examples demonstrate the scaling problem
(figure 9). Figures 9(a) and 9(g) are taken at the same time in the simulations, with
the width W held constant, but Um is greater in figure 9(a) than in figure 9(g). These
two simulations appear almost identical despite the linear scaling predicting that the
faster flow should have evolved more.

The reason why the linear scaling fails is because for the strongly blocked case, the
‘effective width’ of the topography is set by the ‘effective height’ he, and therefore kx

depends on kz. As shown above, hef ≈ 4Um/N , so if the aspect ratio near the crest is
αef , kx ≈ (αef N)/Um and cgz ≈ Umαef . This leads to a non-dimensionalization for these
flows of

t̂ =
Nαef

2π
t. (3.11)

The aspect ratio near the crest depends on the shape of the obstacle. For Gaussian
topography,

αef =
hef

x(hm − hef ) − x(hm)
, (3.12)

=
hef

W

(
− ln

(
1 − hef

hm

))−1/2

. (3.13)

Note that for a Gaussian, or any convex obstacle, αef <hm/W .
A few examples demonstrate this scaling (figure 9). A wide ridge takes longer in

non-dimensionalized time to become established than a narrow ridge (figure 9a–c
compared to figure 9d–f ). Conversely a slower flow (figure 9g–i ) sets up almost as
quickly as the fast one (figure 9a–c). It is a little slower because αef is smaller in the
slow flow case. Finally, a flow with N = N0/2 (figure 9j–l ) sets up more slowly than
a high-stratification flow (figure 9a–c). However, it is not quite half as slow because
the low N means hef is twice as large and therefore αef is larger for this flow.
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Figure 9. Snapshots from four runs. The first two rows are runs made with Nhm/Um = 16.2,
but with a wider obstacle in the second row (d–f ). The third row (g–i ) is a run with the
same obstacle as the first run, but with a slower flow Nhm/Um = 21.7, and the last is the same
obstacle with N = N0/2. The run with the shallower obstacle evolves approximately half as
fast as the steeper one (d–f compared with a–c). The slower flow (g–i ) appears to evolve
slightly more slowly than the faster (a–c), but in general they grow at the same rate. Finally
the lower stratification flow (j–l ) grows slower than higher stratification (a–c). See text for
description of αef .

This scaling can be quantified more clearly with Hovmöller diagrams taken at
x/W = 0.2 downstream of the obstacle crest (figure 10). For the various flows the first
three local minima of velocity are traced. These propagate downwards and arrive at
their resting level, in most cases by 15 h into the simulation. The speed with which
this happens varies by stratification and αef (figures 10d and 10i ), however, when
time is scaled by Nαef the development appears similar for all the runs (figures 10e
and 10j ).

Finally, we test for all the N = N0 runs by checking that cgz ≈ αef Um. Energy profiles
at x/W = 0.25 (figure 11a) are considered for different initial flow speeds and aspect
ratios (second set of runs in table 1). There is some subjectivity to picking the upwards
propagation of the lee waves; here it is tracked by the linear internal wave energy
E = (1/2) u′2 +0.5ζ 2N2 where u′ is the velocity difference from the barotropic velocity
and ζ is the vertical displacement. For plotting we normalize by U 2

o /2. The time when
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Figure 10. Hovmöller diagrams of u/Um from x/W = +0.2 to demonstrate the rate at which
the lee waves grow. In each Hovmöller diagram the first three velocity minima are traced
as they propagate downwards towards the obstacle. (a–f ) demonstrate the effect of changing
αef and Um; N is held constant. Flow over wide ridges (b) develops more slowly than flow
over narrow (a). Scaling time by αef brings the time scales into agreement (e, solid compared
to dashed-dot lines). Faster flows also develop somewhat more quickly than slower flows (a
compared to c), again scaling by αef reconciles these differences (e). Panel (f –j ) demonstrates
that there is a stratification dependence to the development of the flow that scales linearly
with Nαef (j ).
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obstacle widths (αo) and the same wave speeds compared to the effective aspect ratio (αef ).
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the energy exceeds half of its eventual maximum is chosen to represent when upward
propagating energy first passes a depth (thin line in figure 11a). This measure of the
location of the energy front was then fit over the first two wavelengths (z/λo < 2) to
arrive at a measure of cgz. Above the first two wavelengths it was difficult to fit the
propagation because nulls in the energy were made noisy by the addition of higher
mode waves as they propagated through the system. However, the non-nulls in the
energy followed the fit quite well above the initial two wavelengths for most of the
cases.

This procedure was applied to three different values of Nhm/Um and five different
aspect ratios (figure 11b and table 1) and compared to the object aspect ratio
αo = hm/W and the ‘effective aspect ratio’ αef . The results demonstrate good agreement
with cgz = αef Um across this range of flows.

Note that the linear time scale is still a horizontal time scale th = Wef /Um. This is
roughly the time it takes to bring dense water from the upstream side of the obstacle
to the downstream side, setting the bottom boundary condition on the flow above. For
the flows considered here th/tv = Nhef /2πUm ≈ 1/4, so the flow translates across the
effective topography in one-quarter of the time it takes for the dominant disturbance
to propagate one wavelength in the vertical, and th therefore does not strongly affect
the development of the flow. This will not necessarily be the case if the obstacle has
a large plateau at the top, where the appropriate aspect ratio of the lee wave would
be the slope of the sides, but the horizontal advection time scale would be set by the
width of the plateau. We do not explore this regime here.

4. Conclusions and discussion
We have explored stratified flow over an obstacle for high values of NH/Uo and

Nhm/Uo, a parameter regime not previously considered. A simple scaling for the
velocity is Um = UoH/Dm, and the flow is characterized by the parameter NUm/Dm.
This scaling is not possible for moderate values of Nh/U such as those considered by
Baines (1988) because those flows do not have readily predictable upstream velocity
scales or stratification. In the present parameter regime, the upstream stratification
does not change very much, but the velocity does, with a deep stagnant layer forming
on either side of the obstacle, and correspondingly faster flow above. An arrested
lee wave in this increased flow has an observed wavelength close to λo ≈ 2πUm/N .
The form drag on the obstacle is set by the upstream and downstream isopycnal
displacements, and not by the details of the lee waves.

Establishment times are faster for steeper obstacles because the vertical group speed
is proportional to αUm, where α = hm/W is the aspect ratio of the obstacle, leading to
the scaling of the time as t̂ = tNα/2π. The exact choice of α depends on how much
α changes near the obstacle crest. Linear dynamics has t̂ = tW/U , so this scaling
with the aspect ratio is unique to these blocked high-Nhm/Uo flows. Clearly, there
is a transition between the highly blocked time scale and the linear time scale for
moderate Nhm/Uo that we do not explore here.

It is of note that even the modified flow is still quite nonlinear. If we consider
the stagnant layer upstream of the crest to be like a virtual topography, the effective
obstacle height is given by the withdrawal depth, which was close to �h/2 = 0.3πUm/N

(figure 6a). That means that the new Nh/U ≈ 1, and predicting the downstream flow
beyond our quasi-linear scaling here is still not tractable by Long’s solution.

The scaling of the lee wave growth with topographic aspect ratio is unique. The only
study that we are aware of that has investigated the time dependence of a lee-wave
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flow on topographic shape (Miller & Durran 1991) quantified time-dependence using
the maximum flow on the topography, which is of interest to meteorologists. The
time-dependence of this measure was relatively insensitive to topographic shape,
and is consistent with the simulations made here (compare the maximum velocities
in figures 9a and 9d ). However, in the ocean we are interested in the turbulence
driven by the hydraulic response, and that requires vertical propagation to become
established, which we show depends on the slope.

Our results imply that it takes �t = 2π(αef N)−1 for the first wavelength response to
form. Legg & Klymak (2008) considered slopes with αef = 1/10, 1/20 and 1/40, and
N = 2.4 × 10−3 s−1, yielding �t = 1.9, 3.7 and 7 h. Strong unidirectional flow in these
simulations lasted half a tidal period, or 3–4 h, so according to this scaling, the steepest
solution could develop a response that propagated almost two vertical wavelengths
before the flow changed, similar to what was found in the simulations. The shallower
slopes in the oscillating simulations did not have well-formed lee responses because
the disturbance was not able to propagate high enough in the water column before
the tide reverses. Of course, an oscillating tidal flow also has a history, whereby the
flow set-up during one phase of the tide affects the flow later in the tide (Klymak
& Gregg 2003), an effect also believed to be important in atmospheric flows (Chen,
Durran & Hakim 2005).

Thanks to Chris Garrett and Eric Kunze for very helpful comments, and for the
constructive criticisms of the three anonymous reviewers. This work was partially
supported by the U.S. Office of Naval Research (programs N00014-08-1-1039,
N00014-08-1-0376) and the Canadian NSERC Discovery Grant programme.

REFERENCES

Afanasyev, Y. D. & Peltier, W. R. 2001 On breaking internal waves over the sill in Knight Inlet.
Proc. R. Soc. Lond. A 157 (1–27).

Armi, L. 1986 The hydraulics of two layers with different densities. J. Fluid Mech. 163, 27–58.

Baines, P. G. 1988 A general method for determining upstream effects in stratified flow of finite
depth over a long two-dimensional obstacle. J. Fluid Mech. 188, 1–22.

Baines, P. G. 1995 Topographic Effects in Stratified Flows . Cambridge University Press.

Bell, T. H. 1975 Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech.
67, 705–722.

Chen, C.-C., Durran, D. R. & Hakim, G. J. 2005 Mountain-wave momentum flux in an evolving
synoptic-scale flow. J. Atmos. Sci. 62, 3213–3231.

Durran, D. R. 1990 Mountain waves and downslope winds. In Atmospheric Processes Over
Complex Terrain , Meteorological Monographs (ed. W. Blumen), vol. 23, pp. 59–81. American
Meteorological Society.

Farmer, D. M. & Armi, L. 1999 Stratified flow over topography: the role of small scale entrainment
and mixing in flow establishment. Proc. R. Soc. Lond. Ser. A 455, 3221–3258.

Farmer, D. M. & Denton, R. A. 1985 Hydraulic control of flow over the sill in Observatory Inlet.
J. Geophys. Res. 90 (C5), 9051–9068.

Farmer, D. M. & Smith, J. D. 1980 Tidal interaction of stratified flow with a sill in Knight Inlet.
Deep Sea Res. A 27, 239–245.

Henderson, F. M. 1966 Open Channel Hydraulics . Macmillan.

Inall, M. E., Rippeth, T., Griffiths, C. & Wiles, P. 2005 Evolution and distribution of tke
production and dissipation within stratified flow over topography. Geophys. Res. Lett. 32,
L08607, doi:10.1029/2004GL022289.

Klymak, J. M. & Gregg, M. C. 2003 The role of upstream waves and a downstream density-pool
in the growth of lee-waves: stratified flow over the Knight Inlet sill. J. Phys. Oceanogr. 33 (7),
1446–1461.



336 J. M. Klymak, S. M. Legg and R. Pinkel

Klymak, J. M. & Gregg, M. C. 2004 Tidally generated turbulence over the Knight Inlet sill. J.
Phys. Oceanogr. 34 (5), 1135–1151.

Klymak, J. M., Pinkel, R. & Rainville, L. 2008 Direct breaking of the internal tide near
topography: Kaena Ridge, Hawaii. J. Phys. Oceanogr. 38, 380–399.

Lamb, K. G. 2004 On boundary layer separation and internal wave generation at the Knight Inlet
sill. Proc. R. Soc. Lond. A 460, 2305–2337.

Legg, S. & Klymak, J. M. 2008 Internal hydrualic jumps and overturning generated by tidal flow
over a steep ridge. J. Phys. Oceanogr. 38, 1949–1964.

Levine, M. D. & Boyd, T. J. 2006 Tidally-forced internal waves and overturns observed on a slope:
results from the HOME survey component. J. Phys. Oceanogr. 36, 1184–1201.

Lilly, D. K. 1978 A severe downslope windstorm and aircraft turbulent event induced by a
mountain wave. J. Atmos. Sci. 35, 59–77.

Long, R. R. 1955 Some aspects of the flow of stratified fluids. III. Continuous density gradients.
Tellus 7, 341–357.

Marshall, J., Adcroft, A., Hill, C., Perelman, L. & Heisey, C. 1997 A finite-volume,
incompressible Navier–Stokes model for studies of the ocean on parallel computers. J.
Geophys. Res. 102 (C3), 5753–5766.

Mellor, G. L. & Yamada, T. 1982 Development of a turbulence closure model for geophysical
fluid problems. Rev. Geophys. Space Phys. 20, 851–875.

Miller, P. P. & Durran, D. R. 1991 On the sensitivity of downslope windstorms to the asymmetry
of the mountain profile. J. Atmos. Sci. 48, 1457–1473.

Nash, J. D., Alford, M. H., Kunze, E., Martini, K. & Kelley, S. 2007 Hotspots of
deep ocean mixing on the oregon continental slope. Geophys. Res. Lett. 34, L01605,
doi:10.1029/2006GL028170.

Orlanski, I. 1976 A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys.
21, 251–269.

Peltier, W. R. & Clark, T. L. 1979 The evolution of finite-amplitude waves. Part II. Surface wave
drag and severe downslope windstorms. J. Atmos. Sci. 36, 1498–1529.

Peltier, W. R. & Scinocca, J. F. 1990 The origin of severe downslope windstorm pulsation. J.
Atmos. Sci. 46, 2885–2914.

Pierrehumbert, R. T. & Wyman, B. 1985 Upstream effects of mesoscale mountains. J. Atmos. Sci.
42 (10), 977–1003.

Stommel, H. & Farmer, H. G. 1953 Control of salinity in an estuary by a transition. J. Mar. Res.
12 (1), 13–20.


